Random Forests and VGG-NET: An Algorithm for the ISIC 2017 Skin Lesion Classification Challenge
نویسندگان
چکیده
This manuscript briefly describes an algorithm developed for the ISIC 2017 Skin Lesion Classification Competition. In this task, participants are asked to complete two independent binary image classification tasks that involve three unique diagnoses of skin lesions (melanoma, nevus, and seborrheic keratosis). In the first binary classification task, participants are asked to distinguish between (a) melanoma and (b) nevus and seborrheic keratosis. In the second binary classification task, participants are asked to distinguish between (a) seborrheic keratosis and (b) nevus and melanoma. The other phases of the competition are not considered. Our proposed algorithm consists of three steps: preprocessing, classification using VGG-NET [2] and Random Forests [3], and calculation of a final score.
منابع مشابه
Using Deep Learning Method for Classification: A Proposed Algorithm for the ISIC 2017 Skin Lesion Classification Challenge
Skin cancer, the most common human malignancy, is primarily diagnosed visually by physicians . Classification with an automated method like CNN [2, 3] shows potential for challenging tasks . By now, the deep convolutional neural networks are on par with human dermatologist . This abstract is dedicated on developing a Deep Learning method for ISIC [5] 2017 Skin Lesion Detection Competition hoste...
متن کاملRECOD Titans at ISIC Challenge 2017
Our team has worked on melanoma classification since early 2014 [1], and has employed deep learning with transfer learning for that task since 2015 [2]. Recently, the community has started to move from traditional techniques towards deep learning, following the general trend of computer vision [3]. Deep learning poses a challenge for medical applications, due to the need of very large training ...
متن کاملAraguaia Medical Vision Lab at ISIC 2017 Skin Lesion Classification Challenge
This paper describes the participation of Araguaia Medical Vision Lab at the International Skin Imaging Collaboration 2017 Skin Lesion Challenge. We describe the use of deep convolutional neural networks in attempt to classify images of Melanoma and Seborrheic Keratosis lesions. With use of finetuned GoogleNet and AlexNet we attained results of 0.950 and 0.846 AUC on Seborrheic Keratosis and Me...
متن کاملSegmenting Dermoscopic Images
We propose an automatic algorithm, named SDI, for the segmentation of skin lesions in dermoscopic images, articulated into three main steps: selection of the image ROI, selection of the segmentation band, and segmentation. We present extensive experimental results achieved by the SDI algorithm on the lesion segmentation dataset made available for the ISIC 2017 challenge on Skin Lesion Analysis ...
متن کاملImage Classification of Melanoma, Nevus and Seborrheic Keratosis by Deep Neural Network Ensemble
This short paper reports the method and the evaluation results of Casio and Shinshu University joint team for the ISBI Challenge 2017 – Skin Lesion Analysis Towards Melanoma Detection – Part 3: Lesion Classification hosted by ISIC. Our online validation score was 0.958 with melanoma classifier AUC 0.924 and seborrheic keratosis classifier AUC 0.993.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.05148 شماره
صفحات -
تاریخ انتشار 2017